Second-order backpropagation algorithms for a stagewise-partitioned separable Hessian matrix

Eiji Mizutani
Department of Computer Science
Tsing Hua University
Hsinchuen, 300 Taiwan
E-mail: eiji@wayne.cs.nthu.edu.tw

Stuart E. Dreyfus
Industrial Engineering & Operations Research
University of California, Berkeley
Berkeley, CA 94720 USA
E-mail: dreyfus@ieor.berkeley.edu

James W. Demmel
Mathematics & Computer Science
University of California, Berkeley
Berkeley, CA 94720 USA
E-mail: demmel@cs.berkeley.edu

Abstract—Recent advances in computer technology allow the implementation of some important methods that were assigned lower priority in the past due to their computational burdens. Second-order backpropagation (BP) is such a method that computes the exact Hessian matrix of a given objective function. We describe two algorithms for feed-forward neural-network (NN) learning with emphasis on how to organize Hessian elements into a so-called stagewise-partitioned block-arrow matrix form: (1) stagewise BP, an extension of the discrete-time optimal-control stagewise Newton of Dreyfus 1966; and (2) nodewise BP, based on direct implementation of the chain rule for differentiation attributable to Bishop 1992. The former, a more systematic and cost-efficient implementation in both memory and operation, progresses in the same layer-by-layer (i.e., stagewise) fashion as the widely-employed first-order BP computes the gradient vector. We also show intriguing separable structures of each block in the partitioned Hessian, disclosing the rank of blocks.

I. INTRODUCTION

In multi-stage optimal control problems, second-order optimization procedures (see [8] and references therein) proceed in a stagewise manner since the number of stages, is often very large. Naturally, those methods can be employed for optimizing multi-stage feed-forward neural networks: In this paper, we focus on an N-layered multilayer perceptron (MLP), which gives rise to an N-stage decision making problem. At each stage s, we assume there are P_s (s = 1, 2, ..., N) states (or nodes) and n_s (s = 1, 2, ..., N−1) decision parameters (or weights), denoted by an n_s-vector \(\theta^{s+1} \) (between layers \(s \) and \(s+1 \)). No decisions are to be made at terminal stage \(N \) (or layer \(N \)); hence, the \(N-1 \) decision stages in total. To compute the gradient vector for optimization purposes, we employ the “first-order” backpropagation (BP) process [5], [6], [7], which consists of two major procedures: forward pass and backprop pass [see later Eq. (2)]. A forward-pass situation in MLP-learning, where the node outputs in layer \(s-1 \) (denoted by \(y^{s-1} \)) affect the node outputs in the next layer \(s \) (i.e., \(y^s \)) via connection parameters (denoted by \(\theta^{s-1,s} \) between those two layers), can be interpreted as a situation in optimal control where state \(y^{s-1} \) at stage \(s-1 \) is moved to state \(y^s \) at the next stage \(s \) by decisions \(\theta^{s-1,s} \). In the backward pass, sensitivities of the objective function \(E \) with respect to states (i.e., node sensitivities) are propagated from one stage back to another while computing gradients and Hessian elements. However, MLPs exhibit a great deal of structure, which turns out to be a very special case in optimal control; for instance, the “afternode” outputs (or states) are evaluated individually at each stage as \(y^s_j = f^s_j(x^s_j) \), where \(f(\cdot) \) denotes a differentiable state-transition function of nonlinear dynamics, and \(x^s_j \), the “before-node” net input to node \(j \) at layer \(s \), depends on only a subset of all decisions taken at stage \(s-1 \). In spite of this distinction and others, using a vector of states as a basic ingredient allows us to adopt analogous formulas available in the optimal control theory (see [8]). The key concept behind the theory resides in stagewise implementation; in fact, first-order BP is essentially a simplified stagewise optimal-control gradient formula developed in early 1960s [6]. We first review the important “stagewise concept” of first-order BP, and then advance to stagewise second-order BP with particular emphasis on our organization of Hessian elements into a stagewise-partitioned block-arrow Hessian matrix form.

II. STAGEWISE FIRST-ORDER BACKPROPAGATION

The backward pass in MLP-learning starts evaluating the so-called terminal after-node sensitivities (also known as costates or multipliers in optimal control) \(\xi^N = \frac{\partial E}{\partial y^N} \) (defined as partial derivatives of an objective function \(E \) with respect to \(y^N \), the output of node \(k \) at layer \(N \) for \(k = 1, ..., P_N \), yielding a \(P_N \)-vector \(\xi^N \)). Then, at each node \(k \), the after-node sensitivity is transformed into the before-node sensitivity (called delta in ref. [5]; see pages 325–326) \(\delta_h^k = \frac{\partial E}{\partial h^k} \) (defined as partial derivatives of \(E \) with respect to \(x_N^k \), the before-node “net input” to node \(k \)) by multiplying by node-function derivatives as \(\delta_h^k = f^N_k(x_N^k)\xi^N_k \). The well-known stagewise first-order BP (i.e., generalized delta rule; see Eq.(14), p.326 in [5]) for intermediate stage \(s = 2, ..., N-1 \) can be written out with \(\delta \) or \(\xi \) as the recurrence relation below

\[
\begin{align*}
\delta^s_{P_x} & \equiv \frac{\partial E}{\partial y^s} \\
& = \sum_{P_x} \theta^{s+1}_{P_x} \frac{\partial E}{\partial h^s} \\
& = \sum_{P_x} \theta^s_{P_x} \frac{\partial E}{\partial h^s} \\
& = \sum_{P_x} \left[\frac{\partial E}{\partial h^s} \right]_{\theta^{s+1}_{P_x}} \delta^s_{P_x}, \\
& = \sum_{P_x} \left[\frac{\partial E}{\partial h^s} \right]_{\theta^{s+1}_{P_x}} \delta^s_{P_x}, \\

\delta^s_{P_x} & = \frac{\partial E}{\partial y^s} \\
& = \sum_{P_x} \theta^{s+1}_{P_x} \frac{\partial E}{\partial h^s} \\
& = \sum_{P_x} \theta^s_{P_x} \frac{\partial E}{\partial h^s} \\
& = \sum_{P_x} \left[\frac{\partial E}{\partial h^s} \right]_{\theta^{s+1}_{P_x}} \delta^s_{P_x}.
\end{align*}
\]

(1)

where \(E \) is a given certain objective function (to be minimized), and two \(P_{s+1} \)-by-\(P_s \) matrices, \(N^{s+1}_{s+1} \) and \(W^{s+1}_{s+1} \), are defined as \(N^{s+1}_{s+1} \equiv \frac{\partial E}{\partial \theta^{s+1}_{P_x}} \) and \(W^{s+1}_{s+1} \equiv \frac{\partial E}{\partial \theta^{s+1}_{P_x}} \).
These two are called before-node and after-node sensitivities, respectively, for they translate the node-sponsored transition matrices, respectively, from one stage to another; e.g., we can readily verify $\delta_{s+1} = N_{s+1}^{-1} s_{s+1}^T \delta_{s+1} = N_{s+1}^{-1} s_{s+1}^T \delta_{s+1}$. Note that those two forms of sensitivity vectors become identical when node functions $f(.)$ are linear identity functions usually employed only at terminal layer N in MLP-learning.

The forward and backwards passes in first-order stagewise BP for the standard MLP-learning can be summarized below:

Forward pass:

\[
\begin{cases}
\hat{y}^{s+1}_{s+1} = y_{s+1}^{s+1} \delta_{s+1}^T \\
\delta_{s+1} = \delta_{s+1}^T \theta_{s+1}^{s+1} \\
\delta_{s} = \delta_{s}^T \theta_{s}^{s+1}
\end{cases}
\]

(2)

Backward pass:

\[
\begin{cases}
\hat{y}^{s+1}_{s+1} = y_{s+1}^{s+1} \delta_{s+1}^T \\
\delta_{s+1} = \delta_{s+1}^T \theta_{s+1}^{s+1} \\
\delta_{s} = \delta_{s}^T \theta_{s}^{s+1}
\end{cases}
\]

(2)

Here, y_{s+1}^{s+1} (with subscript + on y) includes a scalar constant output y^{s+1}_0 of a bias node (denoted by node 0) at layer s leading to $y_{s+1}^{s+1} = [y_{s+1}^{s+1}, y_{s+1}^{s+1}]$, a $(1 + P_s)$-vector of outputs at layer s; θ_{s+1}^{s+1} is a P_{s+1}-vector of the parameters linked to node i at layer s; θ_{s}^{s+1} is a $(1 + P_s)$-vector of the parameters linked to node s at layer $s + 1$ (including a threshold parameter linked to bias node 0 at layer s); Θ_{s+1}^{s+1} in forward pass, a P_{s+1}-by-$(1 + P_s)$ matrix of parameters between layers s and $s + 1$, includes the P_{s+1} threshold parameters (i.e., the P_{s+1}-vector θ_{s+1}^{s+1} linked to bias node 0 at layer s in the first column, whereas Θ_{s}^{s+1} in backward pass excludes the threshold parameters. Note that a matrix can always be reshaped into a vector for our convenience; for instance, Θ_{s+1}^{s+1} can be reshaped to θ_{s+1}^{s+1}, an n_s-vector of Θ_{s+1}^{s+1}, as shown next:

\[
\Theta_{s+1}^{s+1} = \begin{bmatrix}
\theta_{s+1,1}^{s+1} & \theta_{s+1,2}^{s+1} & \cdots & \theta_{s+1,n_s}^{s+1}
\end{bmatrix}
\]

Reshape

where scalar $\theta_{s+1,1}^{s+1}$ denotes a parameter between node i at layer s and node k at layer $s + 1$. At each stage s, the n_s-length gradient vector associated with θ_{s+1}^{s+1} can be written as

\[
\xi_{s+1}^{s+1} = \left[\frac{\partial y_{s+1}^{s+1}}{\partial \theta_{s+1}^{s+1}} \right]^T \delta_{s+1}^{s+1} = \left[\frac{\partial \Theta_{s+1}^{s+1}}{\partial \theta_{s+1}^{s+1}} \right]^T \delta_{s+1}^{s+1},
\]

(4)

where the transposed matrices are sparse in a block-diagonal form; for instance, see $\frac{\partial y_{s+1}^{s+1}}{\partial \theta_{s+1}^{s+1}}$ later in Eqs. (25) and (26). Yet, the stagewise computation by first-order BP can be viewed in such a way that the gradients are efficiently computed (without forming such sparse block-diagonal matrices explicitly) by the outer product $\delta_{s+1}^{s+1} y_{s+1}^{s+1}$, which produces a P_{s+1}-by-$(1 + P_s)$ matrix G_{s+1}^{s+1} of gradients [7] associated with the same-sized matrix Θ_{s+1}^{s+1} of parameters; here, column i of G_{s+1}^{s+1} is given as a P_{s+1}-vector g_{s+1}^{s+1} for θ_{s+1}^{s+1}. Again, the resulting gradient matrix G_{s+1}^{s+1} can be reshaped to an n_s-length gradient vector g_{s+1}^{s+1} in the same manner as shown in Eq. (3).

Furthermore, the before-node sensitivity vector δ_{s+1}^{s+1} (used to get g_{s+1}^{s+1} in the outer-product operation) is backpropagated by $\xi_{s+1}^{s+1} = \Theta_{s+1}^{s+1} \delta_{s+1}^{s+1}$, as shown in Eq. (2), which makes stagewise “first-order” BP forms neither N nor W explicitly.

Such matrices as N_{s+1} for adjacent layers also play an important role as a vehicle for bucket-brigading second-order information [see later Eqs. (10) and (11)] necessary to obtain the Hessian matrix H. Stagewise second-order BP computes one block after another in the stagewise-partitioned H without forming N_{s+1} explicitly in the same way as stagewise first-order BP, which we shall describe next.

III. THE STAGEWISE-PARTITIONED HESSIAN MATRIX

Given an N-layered MLP, let the total number of parameters be denoted by $n = \sum_{s=1}^{N-1} n_s$, and let each n_s-by-n_t block include Hessian elements with respect to pairs of one parameter at stage s (in the space of n_s parameters θ_{s+1}^{s+1} between layers s and $s+1$) and another parameter at stage t (in the space of n_t parameters θ_{s+1}^{s+1} between layers t and $t+1$). Then, the n-by-n symmetric Hessian matrix H of a certain objective function E can be represented as a partitioned form among N layers (i.e., $N-1$ decision stages) in such a stagewise format as shown next:

\[
\begin{bmatrix}
H_{N-1}^1 & H_{N-2}^1 & \cdots & H_{1}^1
\end{bmatrix}
\]

By symmetry, we need to form only the lower (or upper) triangular part of H; totally $\frac{N(N-1)}{2}$ blocks including n_s-by-n_t rectangular “off-diagonal” blocks $H_{s,t}^{s+1}(1 \leq s \leq t \leq N-1)$ as well as $N-1$ symmetric n_s-by-n_s “diagonal” blocks $H_{s,s}^{s+1}(1 \leq s \leq N-1)$, of which we need only the lower half.

A. Stagewise second-order backpropagation

Stagewise second-order BP computes the entire Hessian matrix by one forward pass followed by backward processes per training datum in a stagewise block-by-block fashion. The Hessian blocks are computed from stage $N-1$ in a stagewise manner in the order of

\[
\begin{bmatrix}
H_{N-1}^1 & H_{N-2}^1 & \cdots & H_{1}^1
\end{bmatrix}
\]

Stage $N-1$

Stage $N-2$

Stage $N-3$

Stage N

Stage 1
In what follows, we describe algorithmic details step by step:

Algorithm: Stagewise second-order BP (per training datum).

(i) **(Step 0)** Do forward pass from stage 1 to \(N \) to obtain node outputs, and evaluate the objective function value \(E \).

(ii) **(Step 1)** At terminal stage \(N \), compute \(\xi^N = \left[\frac{\partial E}{\partial y^N} \right] \), the \(P_N \)-length *after-node* sensitivity vector (defined in Sec. II), and

\[
Z^N_{P_N \times P_N} = \begin{bmatrix} \frac{\partial^2 E}{\partial y^N \partial y^N} & \frac{\partial E}{\partial y^N} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 y^N}{\partial x^N \partial x^N} & \frac{\partial y^N}{\partial x^N} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 y^N}{\partial x^N \partial x^N} & \frac{\partial y^N}{\partial x^N} \end{bmatrix} \xi^N. \tag{6}
\]

The \((i, j)\)-element of the last symmetric matrix is obtainable from the following special \(\langle \cdot, \cdot \rangle \)-operation (set \(s = N \) below):

\[
\left\langle \frac{\partial^2 y^N}{\partial x^N \partial x^N} \right\rangle_{ij} = \sum_{k=1}^{P_s} \sum_{j=1}^P \sum_{i=1}^P \xi^N_k \frac{\partial^2 y^N}{\partial x^N \partial x^N}, \tag{7}
\]

which is just a diagonal matrix in standard MLP-learning.

- Repeat the following Steps 2 to 6, starting at stage \(s = N - 1 \):

- **(Step 2)** Obtain the diagonal Hessian block at stage \(s \) by

\[
H_{n_x \times n_x}^{s+1} = \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} + \begin{bmatrix} \frac{\partial^2 h_{s+1}}{\partial \theta_{s+1}^{(1)} \partial \theta_{s+1}^{(1)}} \end{bmatrix} \tag{8}
\]

where \(F_x^{s+1, u} \) is not needed initially when \(s = N - 1 \); hence, defined later in Eq. (11).

- **(Step 3)** Only when \(2 \leq N - s \) holds, obtain \((N - s - 1) \)-off-diagonal Hessian blocks by

\[
H_{n_x \times n_x}^{s+1} = \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} + \begin{bmatrix} \frac{\partial^2 h_{s+1}}{\partial \theta_{s+1}^{(1)} \partial \theta_{s+1}^{(1)}} \end{bmatrix} \tag{9}
\]

where \(F_x^{s+1, u} \) is not needed initially when \(s = N - 1 \); hence, defined later in Eq. (11).

- **(Step 4)** When \(2 \leq N - s \) holds, update previously-computed rectangular matrices \(F_x^{s+1, u} \) for the next stage by:

\[
F_x^{s+1, u} \leftarrow \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} + \begin{bmatrix} \frac{\partial^2 h_{s+1}}{\partial \theta_{s+1}^{(1)} \partial \theta_{s+1}^{(1)}} \end{bmatrix} \tag{10}
\]

- **(Step 5)** Compute a new \(P_s \)-by-\(n_s \) rectangular matrix \(F_x^{s, u} \) at the current stage \(s \) by

\[
F_x^{s, u}_{P_s \times n_s} = \begin{bmatrix} \theta_x^{s+1} \end{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} + \begin{bmatrix} \frac{\partial^2 h_{s+1}}{\partial \theta_{s+1}^{(1)} \partial \theta_{s+1}^{(1)}} \end{bmatrix} \tag{11}
\]

- **(Step 6)** Compute a \(P_s \)-by-\(P_s \) matrix \(Z^{s+1} \) by

\[
Z^{s+1} = \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} \begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} + \begin{bmatrix} \frac{\partial^2 h_{s+1}}{\partial \theta_{s+1}^{(1)} \partial \theta_{s+1}^{(1)}} \end{bmatrix} \tag{12}
\]

where the last matrix is obtainable from the \(\langle \cdot, \cdot \rangle \)-operation defined in Eq. (7).

- Go back to Step 2 by setting \(s = s - 1 \). *(End of Algorithm)*

Remarks: The \(\langle \cdot, \cdot \rangle \)-operation defined in Eq. (12) yields a matrix of only first derivatives below:

\[
\begin{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} \end{bmatrix} \frac{\partial h_{s+1}}{\partial \theta_{s+1}^{(1)}} + \begin{bmatrix} \frac{\partial^2 h_{s+1}}{\partial \theta_{s+1}^{(1)} \partial \theta_{s+1}^{(1)}} \end{bmatrix} \tag{13}
\]

Here, the \(n_s \)-column space of the resulting \(P_s \)-by-\(n_s \) matrix has totally \(P_{s+1} \) partitions, each of which consists of \((1 + P_s) \) columns since \(n_s = (1 + P_s)P_{s+1} \), and each partition has a \(P_s \) vector of zeros, denoted by \(0 \), in the first column. The posed sparsity is tied to particular applications like MLP-learning.

B. Nodewise second-order backpropagation

In the NN literature, the best-known second-order BP is probably Bishop’s method [1], [3], where for every node individually one must run a forward pass to the terminal output layer followed by a backward pass back to the node to get information necessary for Hessian elements; here, that node is one of the variables differentiated with respect to [for seeking node sensitivity in Eq. (1)]. This is what we call nodewise **BP**, a nodewise implementation of the chain rule for differentiation, which yields a Hessian element below with respect to two parameters \(\theta_{s,j}^{u} \) and \(\theta_{s,k}^{u} \) for \(1 < s \leq u \leq N \) using \(n_{s-1}^{u,v} \) and \(z_{s,l}^{u,v} \) [cf. Eqs. (6) and (13)]:

\[
\frac{\partial^2 E}{\partial \theta_{s,j}^{u} \partial \theta_{s,k}^{v}} = y_i^{1} \frac{\partial y_i^{v}}{\partial \theta_{s,j}^{u}} \frac{\partial \theta_{s,j}^{u}}{\partial \theta_{s,k}^{v}} + y_i^{1} \frac{\partial y_i^{v}}{\partial \theta_{s,j}^{u}} \frac{\partial \theta_{s,j}^{u}}{\partial \theta_{s,k}^{v}} - y_i^{1} \frac{\partial y_i^{1}}{\partial \theta_{s,k}^{v}} \frac{\partial \theta_{s,k}^{v}}{\partial \theta_{s,j}^{u}} \tag{14}
\]

This is Eq. (4.71), p. 155 in [2] rewritten with stages introduced and denoted by superscripts, and \(n_{s,k}^{u-1} \) is the \((k, j)\)-element of \(P_{u-1} \)-by-\(P_s \) matrix \(N_{s-1}^{u-1} \) in Eq. (1). The basic idea of Bishop’s nodewise BP is as follows: Compute all the necessary quantities: \(\delta_i^u \) by stagewise first-order BP, \(n_{s,k}^{u-1} \) by forward pass, and \(z_{s,j}^{u-1} \) by backward pass in advance; then,
use Eq. (14) to evaluate Hessian elements. Unfortunately, this nodewise implementation of chain rules (14) does not exploit
stagewise structure unlike first-order BP (see Section II); in addition, it has no implication about how to organize Hessian elements into a stagewise-partitioned “block-arrow” Hessian matrix [see Eq. (5) and Fig. 1]: To this end, it would be of much greater value to rewrite the nodewise algorithm posed by Bishop (outlined on p. 157 in [2]) in matrix form below.

Algorithm: Nodewise second-order BP (per training datum).

(Step 0) Do forward pass from stage 1 to stage N.

(Step 1) Initialize $N^{s,0} = I$ (identity matrix) and $N^{u,s} = 0$ (matrix of zeros) for $1 < s < u \leq N$ (see pages 155 & 156 in [2] for this particular initialization), and then do forward pass to obtain a P_t-by-P_t non-zero dense matrix $N^{s,t}$ (for $s < t; s = 2, \ldots, N - 1$) by the following computation:

$$n^{s,t}_{j,l} = \sum_{k=1}^{P_{t-1}} f_k(x^{t-1}_k)\theta_{k,l}^{t-1} n^{s,t-1}_{j,k} \quad \Leftarrow \quad N^{s,t} = N^{s,t-1} \odot N^{s,t-1} \quad \text{(15)}$$

(Step 2) At terminal stage N, compute $\delta^N = [\partial E / \partial x^N_k]$, the P_N-length before-node sensitivity vector, and matrix Z^N [defined in Eq. (6)], and then obtain the following for $2 \leq s \leq N$:

$$z^{s,N}_{j,l} = \sum_{m=1}^{P_N} P^{s,N}_{j,m} \left(\frac{\partial^2 E}{\partial x^t_j \partial x^m_l} \right) \Leftrightarrow Z^{s,N} = N^{s,N} \cdot Z^N \quad \text{(16)}$$

(Step 3) Compute δ^s using first-order BP: $\delta^{s+1}_{j,l} = \sum_{l=1}^{P_{s+1}} P_{s+1}^{l} \delta^{s+1}_{l} + f_k(x^{s+1}_k) \sum_{l=1}^{P_{s+1}} \theta_{k,l}^{s+1} \delta^{s+1}_{j,l}$, and obtain the next for $1 < s < t < N$:

$$z^{s,t}_{j,k} = n^{s,t}_{j,k} f_k(x^{t}_k) \sum_{l=1}^{P_{s+1}} \theta_{k,l}^{t} \delta^{s+1}_{l} + f_k(x^{t}_k) \sum_{l=1}^{P_{s+1}} \theta_{k,l}^{t} \delta^{s+1}_{j,l} \quad \Leftrightarrow \quad Z^{s,t} = N^{s,t} \cdot \begin{bmatrix} \frac{\partial^2 y}{\partial x^t_j \partial x^s_l} & \epsilon^t \end{bmatrix} + Z^{s+1,t} \quad \text{(17)}$$

(Step 4) Evaluate the Hessian blocks by Eq. (14) in matrix form for $1 < s < u \leq N$:

$$H^{s,u}_{n_{s-1} \times n_{u-1}} = \left[\begin{array}{c} \frac{\partial^2 y}{\partial x^s_j \partial x^u_k} \\ \frac{\partial^2 y}{\partial x^s_j \partial x^u_k} \end{array} \right] \begin{bmatrix} P^s_{n_{s-1}} & P^u_{n_{u-1}} \\ P^u_{n_{u-1}} & P^s_{n_{s-1}} \end{bmatrix} \delta^s + Z^{u,u}_{n_{u-1} \times n_{u-1}} \frac{\partial^2 u}{\partial x^s_j \partial x^u_k} = \begin{bmatrix} I_{P_s \times P_s} & 0_{P_s \times P_u} \\ 0_{P_u \times P_s} & I_{P_u \times P_u} \end{bmatrix} \delta^s + Z^{u,u}_{n_{u-1} \times n_{u-1}} \frac{\partial^2 u}{\partial x^s_j \partial x^u_k} \quad \text{(18)}$$

where Eq. (12) is used for evaluating a $\langle \cdot , \cdot \rangle$-term. $\circ (End)$$\circ$

Remarks: Eqs. (15), (16), and (17) correspond to Eqs.(4.75), (4.79), and (4.78), respectively, on pages 155 & 156 in ref. [2].

IV. TWO HIDDEN-LAYER MLP LEARNING

In optimal control, N, the number of stages, is arbitrarily large. In MLP-learning, however, use of merely one or two hidden layers is by far the most popular at this stage. For this reason, we consider standard two-hidden-layer MLP-learning. This is a four-stage ($N=4$; three decision stages plus a terminal stage) problem, in which the total parameters (or decision variables) is given as:

$$n = n_3 + n_2 + n_1 = P_4(1 + P_3) + P_3(1 + P_2) + P_2(1 + P_1) \quad \text{including threshold parameters.}$$

In this setting, we have a three-block by three-block stagewise symmetric Hessian matrix H in a nine-block partitioned form below as well as a three-block-partitioned gradient vector g defined in Eq. (4):

$$H = \begin{bmatrix} H^{3,3} & H^{3,2} & H^{3,1} \\ H^{2,3} & H^{2,2} & H^{2,1} \\ H^{1,3} & H^{1,2} & H^{1,1} \end{bmatrix}, \quad g = \begin{bmatrix} g^{1,2} \\ g^{2,3} \\ g^{3,4} \end{bmatrix}. \quad \text{(19)}$$

Here, we need to form three off-diagonal blocks and only the lower (or upper) triangular part of three diagonal blocks; totally, six blocks $H^{s,t}$ ($1 \leq s \leq t \leq 3$). Each block $H^{s,t}$ includes Hessian elements with respect to pairs of one parameter at stage s and another at stage t.

A. Algorithmic behaviors

We describe how our version of nodewise second-order BP algorithm in Section III-B works:

(Step 1): By initialization, set $N^{4,4} = I$, $N^{3,3} = I$, $N^{2,2} = I$, $N^{1,1} = 0$, $N^{1,2} = 0$, and $N^{3,2} = 0$. By forward pass in Eq. (15), get three dense blocks: $N^{3,3}, N^{2,2},$ and $N^{2,3}, N^{3,4}$. (Step 2): Get Z^4 by Eq. (6) and $Z^{4,4} = N^{4,4}Z^4$ by Eq. (16); similarly, obtain $Z^{3,4}$ and $Z^{4,3}$ as well.

(Step 3): Use Eq. (17) to get $Z^{3,3}, Z^{2,3},$ and $Z^{2,2}$; for instance, by $Z^{3,3} = N^{3,3} \cdot \begin{bmatrix} \frac{\partial^2 y}{\partial x^3_j \partial x^3_k} \end{bmatrix} \epsilon^3 + Z^{4,4}N^{4,4}$. (Step 4): Use Eq. (18) [i.e., Eq. (14)] to obtain the desired six Hessian blocks.

All those nine N blocks can be pictured in an augmented “upper triangular” before-node sensitivity transition matrix \tilde{N} defined below together with \tilde{x}, a P-dimensional augmented vector, which consists of all the before-node net-inputs per datum at three layers except the first input layer ($N = 1$) because x^1 is a fixed vector of given inputs; hence, $\tilde{P} = P_1 + P_2 + P_3$:

$$N_{\tilde{P} \times \tilde{P}} \sigma \begin{bmatrix} \frac{\partial y}{\partial x^{\tilde{P}}} \\ \frac{\partial y}{\partial x^{\tilde{P}}} \end{bmatrix} = \begin{bmatrix} I_{P_1 \times P_1} & 0_{P_1 \times P_2} & 0_{P_1 \times P_3} \\ 0_{P_2 \times P_1} & I_{P_2 \times P_2} & 0_{P_2 \times P_3} \\ 0_{P_3 \times P_1} & 0_{P_3 \times P_2} & I_{P_3 \times P_3} \end{bmatrix} \delta^s + \begin{bmatrix} \tilde{x}^T \\ \tilde{x} \end{bmatrix} \quad \text{(20)}$$

Here, three diagonal identity blocks I correspond to $N^{4,4}, N^{3,3}$, and $N^{2,2}$. At first glance, Bishop’s nodewise BP relies on using \tilde{N} explicitly, requiring $N^{s,1}$ even for non-adjacent layers ($s + 1 < t$) as well as identity blocks $N^{s,s}$ and zero blocks. For adjacent blocks $N^{s,s+1}$, Eq. (15) just implies multiply by an identity matrix; hence, no need to use it in reality. Likewise, at Step 2, $Z^{4,4} = Z^4$ due to $N^{4,4} = I$. Furthermore, in (Eq. 18), $N^{3,3} = 0$ and $N^{3,2} = 0$ (matrices of zeros) are used when diagonal blocks $H^{s,s}$ are evaluated (but $N^{3,2} = 0$ is not needed at all). In this way, nodewise BP yields Hessian blocks by Eq. (18), a matrix form of Eq. (14), as long as \tilde{N} in Eq. (20) is obtained correctly in advance by forward pass at Step 1 (according to pp.155–156 in [2]); yet, it is not very efficient to work on such zero entries and multiply by one.
On the other hand, stagewise second-order BP evaluates N_{s+1}^{s+1} implicitly only for adjacent layers during the backward process (not by forward pass) essentially in the same manner as stagewise first-order BP does with no N_{s+1}^{s+1} blocks required explicitly, and thus avoids operating on such zeros and ones [for Eq. (20)]. For off-diagonal Hessian blocks $H^{s,n}$ \((s < n)\), the parenthesized terms in Eq. (18) become the rectangular matrix $F^{s,n-1}$ in Eq. (11). That is, stagewise BP splits Eq. (18) into Eqs. (8) and (9) by exploitation of the stagewise MLP structure.

B. Separable Hessian Structures

We next show the Hessian-block structures to be separable into several portions. Among the six distinct blocks in Eq. (19), due to space limitation we display below three Hessian blocks: two diagonal blocks and one off-diagonal block alone.

\[
H^{3,3}_{n_3 \times n_3} = \left[\begin{array}{cccc} \frac{\partial^2 y^s}{\partial x^4 \partial x^3} & \vdots & \frac{\partial^2 y^s}{\partial x^3 \partial x^1} & \frac{\partial^2 y^s}{\partial x^4 \partial x^1} \\
\vdots & \ddots & \vdots & \vdots \\
\frac{\partial^2 y^s}{\partial x^3 \partial x^1} & \vdots & \frac{\partial^2 y^s}{\partial x^3 \partial x^2} & \frac{\partial^2 y^s}{\partial x^3 \partial x^1} \\
\frac{\partial^2 y^s}{\partial x^4 \partial x^1} & \vdots & \frac{\partial^2 y^s}{\partial x^4 \partial x^2} & \frac{\partial^2 y^s}{\partial x^4 \partial x^1} \end{array} \right] \\
+ \frac{\partial^2 y^s}{\partial x^3 \partial x^1} \left[\begin{array}{c} \xi_4 \\
\vdots \\
\xi_2 \\
\xi_1 \end{array} \right] \left[\begin{array}{c} \xi_4 \\
\vdots \\
\xi_2 \\
\xi_1 \end{array} \right]^T \frac{\partial^2 y^s}{\partial x^4 \partial x^1} \\
+ \frac{\partial^2 y^s}{\partial x^3 \partial x^1} \left[\begin{array}{c} \xi_4 \\
\vdots \\
\xi_2 \\
\xi_1 \end{array} \right] \left[\begin{array}{c} \xi_4 \\
\vdots \\
\xi_2 \\
\xi_1 \end{array} \right]^T \frac{\partial^2 y^s}{\partial x^4 \partial x^1} \\
+ \frac{\partial^2 y^s}{\partial x^3 \partial x^1} \left[\begin{array}{c} \xi_4 \\
\vdots \\
\xi_2 \\
\xi_1 \end{array} \right] \left[\begin{array}{c} \xi_4 \\
\vdots \\
\xi_2 \\
\xi_1 \end{array} \right]^T \frac{\partial^2 y^s}{\partial x^4 \partial x^1} \end{array} \right]
\]

Eq. (21) [i.e., $H^{3,3}_{n_3 \times n_3}$ placed at the upper-left corner in Eq. (5)] always becomes block-diagonal (with P_4 sub-blocks \times below):

\[
H^{3,3}_{n_3 \times n_3} = \begin{bmatrix} x_1 & \cdots & x_{P_4} \\
\vdots & \ddots & \vdots \\
x_{P_3} & \cdots & x_{P_4} \end{bmatrix},
\]

where x_i denotes a C_A-by-C_A dense symmetric sub-block.

Furthermore, the last term in $H^{1,2}$ is a sparse matrix of only first derivatives due to Eq. (12); in the next section, we shall explain this finding in nonlinear least squares learning.

C. Neural Networks Nonlinear Least Squares Learning

When our objective function E is the sum over all the d training data of squared residuals, we have $E(\theta) = \frac{1}{2}J^T J$, where $r = y^T(\theta) - t$; in words, an m-vector r of residuals is the difference between an m-vector t of the desired outputs and an m-vector y^s of the terminal outputs of a two hidden-layer MLP (with $N = 4$), and $m \equiv P_a d (P_a > 1$, or multiple terminal outputs in general). The gradient vector of E is given by $g = J^T r$; here, J denotes the m-by-n jacobian matrix of the residual vector r, which is J of y^s because t is independent of θ by assumption. As shown in Eqs. (19)(right) and (4), g is stagewise-partitioned as: $g^{s+1} = \left[\frac{\partial y^{s+1}}{\partial \theta^{s+1}} \right] \xi^{s+1}$ for $s = 1, \ldots, 3$, where $\xi^s = r$. Likewise, J can be given in stagewise column-partitioned form below in Eq. (25), or equivalently in block-angular form below in Eq. (26) [with $n_B \equiv n - n_3 = n_1 + n_2$]:

\[
J_{m \times n} = \begin{bmatrix} \frac{\partial y^1}{\partial \theta^1} & \cdots & \frac{\partial y^1}{\partial \theta^{n_2}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y^2}{\partial \theta^1} & \cdots & \frac{\partial y^2}{\partial \theta^{n_2}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y^3}{\partial \theta^1} & \cdots & \frac{\partial y^3}{\partial \theta^{n_2}} \end{bmatrix}_{m \times n_2}
\]

where A_k is d-by-C_A \((k = 1, \ldots, P_a)\) and B_k d-by-n_B. The block-angular form is due to the same reason as Eq. (24); i.e., only C_A parameters affect each terminal residual. Since J has the block-angular form in Eq. (26), its cross-product matrix $J^T J$ has a so-called block-arrow form due to its appearance, as illustrated in Fig. 1, where $H = J^T J$ and $H^{1,3}$ in Eqs (21) and (24) consists of P_4 diagonal blocks $A_k^T A_k$ for $k = 1, \ldots, P_4$. If the terminal node functions are the linear
form because the right-front rectangular panel depicts the transposed block-angular residual identity function, then all the diagonal blocks learning, the full Hessian here, the lower-right block of the Hessian is: matrix J as derivatives (called the Hessian can be obtained from Eq. (12)).

On the other hand, such nice sparsity may disappear when with its arrow-head pointing downwards to the sparsity with its arrow-head pointing downwards to the systemic sparsity \mathbf{H} is still worth exploiting sparsity of weight-sharing and weight-pruning are applied (as usual in optimal control [8]) so that all the terminal parameters θ^{N-1} are shared among the terminal states y^N. In this way, MLP-learning exhibits a great deal of structure.

For the parameter optimization, we recommend trust-region globalization, which works even if \mathbf{H} is indefinite [10], [9]. In large-scale problems, where \mathbf{H} may not be needed explicitly, we could use sparse Hessian-matrix-vector multiply (e.g., [11]) to construct Krylov subspaces for optimization purposes, but it is still worth exploiting sparsity of \mathbf{H} for pre-conditioning [10]. In this context, it is not recommendable to compute (or approximate) the inverse matrix of (sparse) block-arrow \mathbf{H} (see Fig. 1) because it always becomes dense.

Our matrix-based algorithms revealed that blocks in the stagewise-partitioned \mathbf{H} are separable into several distinct portions, and disclosed that sparse matrices of only first derivatives [see Eq. (27)] can be further identified. Furthermore, by inspection of the common matrix terms in block [e.g., see Eqs. (21) to (23)], we see that the Hessian part computed on each datum at stage s, which consists of blocks \mathbf{H}^{s+1} (1 \leq s \leq $N-1$), is at most rank P_{s+1}, where P_{s+1} denotes the number of nodes at layer $s+1$. We plan to report in another opportunity more on those findings as well as the practical implementation issues of stagewise-second-order BP, for which the matrix recursive formulas may allow us to take advantage of level-3 BLAS (Basic Linear Algebra Subprograms; see http://www.netlib.org/blas/).

REFERENCES

