Errata for the paper entitled

“Second-order stagewise backpropagation for Hessian-matrix analyses and investigation of negative curvature”

by Eiji Mizutani and Stuart E. Dreyfus.

— 2008 Special Issue: Advances in Neural Networks Research: IJCNN’07.

As of July 27, 2008.

(1) Page 194: In Eq. (4), \(\theta^s \) should be \(\theta^{s,s+1} \), and add “=” (notation for being equal to) between \(G^s \) and \(y^s_s + \delta^{s+1} \).

(2) Page 195: Eq. (5) should be expressed for recursion as

\[
Z^s = \frac{N^s,s+1}{P_s \times P_s} Z^{s+1} + \frac{N^s,s+1}{P_{s+1} \times P_{s+1}} \frac{\partial y^s_s}{\partial x^s} \xi^s,
\]

where all the notations are defined in the paper except a matrix \(N \) below

\[
N^s,s+1 = \def \frac{\partial x^{s+1}}{\partial x^s},
\]

The above recurrence relation is the same as Eq. (13) in Mizutani, Dreyfus, & Demmel (2005); see also Eq. (27) in Mizutani & Dreyfus, 2006.

(3) Page 195: In Eqs. (10) and (11), \(\theta^s \) should be \(\theta^{s,s+1} \); likewise, \(\theta^r \) should be \(\theta^{r,r+1} \).

(4) Page 197: Just above Eq. (14), the sentence

In general, the residual Hessian matrix \(S \) in \(H \) can separate into two types of blocks

should read

In general, the residual Hessian matrix \(S \) in \(H \) always includes two types of blocks

(5) Page 197: Eq. (16) should have included an additional matrix \(T \) for a general expression as

\[
S = \begin{bmatrix}
\sum_{n_3 \times n_3}^V & \sum_{n_2 \times n_2}^V & \sum_{n_1 \times n_1}^V \\
\sum_{n_2 \times n_2}^V & \sum_{n_1 \times n_1}^V & \sum_{n_1 \times n_1}^V \\
\sum_{n_1 \times n_1}^V & \sum_{n_1 \times n_1}^V & \sum_{n_1 \times n_1}^V
\end{bmatrix} +
\begin{bmatrix}
\Gamma^{1,1T} & \Gamma^{1,2T} \\
\Gamma^{2,1T} & \Gamma^{2,2T} \\
\Gamma^{3,1T} & \Gamma^{3,2T}
\end{bmatrix}
+ T,
\]

where \(T \) denotes all the remaining terms; see Eqs. (22) and (23) in Mizutani, Dreyfus, & Demmel (2005) for such terms that construct \(T \). See also Mizutani 2008.

(6) Page 201: In Section 5, the second sentence

In MLP-learning, special sparsity structure inevitably arises in \(S \),

should read

In single-hidden-layer linear-output MLP-learning, special sparsity structure inevitably arises in \(S \) (e.g., see \(S \) in Proof of Lemma 2),
References:

Author information:

- **Eiji Mizutani** (e-mail: eiji@mail.ntust.edu.tw) is with Department of Industrial Management, National Taiwan University of Science & Technology, Taipei, TAIWAN.

- **Stuart Dreyfus** (e-mail: dreyfus@ieor.berkeley.edu) is with Department of Industrial Engineering & Operations Research, University of California, Berkeley, CA USA.